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Abstract

The purpose of this paper is to discuss the design and implementation of comprehensive mission
planning systems for swarms of autonomous aerial vehicles (UAV). Such a system could integrate
several problem domains including path planning, vehicle routing, and swarm behavior as based upon a
hierarchical architecture. The example developed system consists of a parallel multi-objective
evolutionary algorithm-based terrain-following parallel path planner, a multi-objective evolutionary
algorithm (MOEA) for the UAV swarm router, and a parallel simulation. Generic objectives include
minimizing cost, time, and risk generally associated with a three dimensional vehicle routing problem
(VRP). The concept of the Swarm Routing Problem (SRP) as a new combinatorics problem for use in
modeling UAV swarm routing is presented as a variant of the Vehicle Routing Problem with Time
Windows (VRPTW). Various multi-objective VRPTW routing benchmarks result in very good Pareto-
based performance with the MOEA which is also reflected in the results of the new SRP benchmarks.
The culmination of this effort is the development of an extensible developmental path planning model
integrated with swarm routing behavior and tested with a parallel UAV simulation. Discussions of this
system’s capabilities are presented along with recommendations for generic development of UAV swarm
mission planning.

1 Introduction

Path planning is the process of designing a sequence of states through which an object must move in order to travel from an initial
state to a goal state. Path planning optimization is a process that proscribes a particular plan for reaching a goal state from an
initial state at a minimal cost. A path planning algorithm is a sequence of steps taken to calculate a path plan given knowledge of
the path environment and a set of conditions or constraints that must be adhered to. Many successful path planning algorithms
have been developed over many years [1,2,3,9,11,17,25,28]. These algorithms vary in their effectiveness and efficiency based
primarily on the specific formulation of the path planning problem and the number of variables and constraints required. Based
upon this foundation in part, it is desired to develop three dimensional (3D) autonomous aerial vehicles (UAV) mission plans
including path planning, vehicle routing, and swarm behavior. The outline of the paper is: background, approach and objectives,
mission planning, high level and low level design, implementations, experimental testing, results and analysis.

2 Background

An underlying element of UAV path planning is the Vehicle Routing Problem (VRP) which is defined as the task of assigning a
set of vehicles, each with a limited range and capacity, to a set of locations or targets that must be visited [27] with cost and risk
objectives. The VRP has been shown to be an NP-complete problem. Such problem classes do not lend themselves to
deterministic problem solving methods because the runtime of these approaches grows exponentially with the problem size.
Stochastic methods have been used to provide “good” solutions to the VRP in reasonable time [21,27]. These stochastic methods
achieve their results by generating feasible solutions and then improving these results through successive refinements using
heuristics.

The UAV routing problem consists of a set of targets L, a set of UAVs V, the set of traveling costs Q, the set of routes G, a
distance function 9, a capacity function y, and a demand function a. The formal definition is [21]:
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This model is addressed in the particular application which is a swarm of heterogeneous UAVs routed for reconnaissance or to
deliver munitions to a set of targets in a selected terrain. A mathematical model for the VRP with time windows (VRPTW) and
the associated swarm routing problem mathematical model are quite similar with additional constraints [37].

Representing cost and risk as fixed objectives is adequate for UAV routing problems in which distances between targets are
large enough to ignore the added path lengths resulting from having to make series of turns in order to change heading from one
location to another. However, when the target layout is such that the distances between the targets are as near as several turn radii
of a UAV, then the cost of traveling between any two targets must consider the heading at which the UAVs arrived at the initial
location and the heading they must assume to vector themselves towards the next target. Moreover, the relationship of the UAV
swarm elements must be explicitly controlled. Taking this into account, algorithms that solve the VRP should calculate the cost of
every assignment from scratch in order to accurately represent the cost associated with that assignment.

In this research, a UAV swarm path planning algorithm is developed that calculates the optimal route from a start node to an
end node, through a mid point. This path through a triplet of locations can then be concatenated with other triplets to quickly and
accurately calculate the actual cost of a vehicle assignment. This information can be tabularized and input to programs such as an
evolutionary algorithm for solving the VRP. For example, the Genetic Vehicle Router (GVR) [21] where “good” assignments can
be made but the costs associated with these assignments are more representative of the required physical route or path. The goal is
not merely to calculate the true cost of a particular assignment made by the GVR but to influence the GVR to make better
assignments using the more complete cost information and thus providing proper UAV turn corridors. Swarm behavior is of
course an integral element of the generic UAV mission planning system in order to generate acceptable individual UAV altitude
and attitude positions and velocities.

3 Approach and Objectives

When problems require minimization of multiple competing, cost elements, a trade-off is established between the set of
competing requirements. In these instances, multi-objective evolutionary algorithms (MOEAs) can provide a decision maker with
a variety of candidate solutions, each representing a level of optimization of one parameter with respect to another [4]. In this
research, a MOEA is developed for path planning where the objectives are cost, encompassing distance traveled and the amount
of climbing a vehicle does, and risk resulting from flying through areas of threat. The solution set contains a selection of routes
such that each route has the lowest cost associated with a particular level of risk and vice versa.

Terrain Following (TF) is a mode of flight in which an aircraft maintains a fixed altitude above ground level (AGL) and flies
low (on the order of a few hundred feet) through an area of interest. Naturally, this type of flying involves a great deal of climbing
and descending, a costly operation. The TF concept is to remain hidden from enemy air defenses. The technique to hide within
rugged terrain is known as terrain masking. Terrain Masking (TM) algorithms determine a route of flight in which an aircraft can
move toward a target or location of interest while remaining masked from enemy air defense radar by the surrounding terrain.
Often routes calculated by TM algorithms have significant climbing and descending costs associated with them. The process of
picking the best-masked routes with the least possible cost in terms of climbing and overall distance traveled is known as Terrain
Following Optimization (TFO).

Thus, the research goal is to develop mission planning capabilities for UAV swarms including VR, TF, and swarm behavior.
In this effort there are four main objectives: 1. Develop a multi-objective evolutionary algorithm for efficient path planning 2.
Develop a multi-objective router, 3 Develop a parallel system that computes individual route segments for input to a GVR
algorithm and 4 incorporate swarm behavior throughout a parallel simulation.

The first objective concerns the development of a robust path planning algorithm for terrain following UAV missions. Since
all routes have both a cost and a risk associated with them, path planning can naturally be expressed as a multi-objective
minimization problem. Most often, decreasing the cost of the path, i.e. the path length and the amount of climbing required to
navigate the terrain, results in increasing the risk associated with enemy air defenses. Likewise, a path generated to avoid
intersection with all enemy air defense radar systems results in increased path cost. Single objective problem formulations for
path planning often use constraints such as obstacle and threat avoidance and then calculate the least-cost path available that
adheres to all constraints [22]. Other single objective problem formulations treat constraints as components of the solutions fitness
[28]. Problems defined in this way have weights assigned to each objective and the resulting fitness is an aggregation of
component scores. The common disadvantage of these approaches is twofold. First, a risk free path may not exist or its cost may
exceed the UAV capabilities. Second, paths containing an acceptable level of risk may have a substantially lower cost than a
completely risk adverse path if one exists. A multi-objective approach provides a choice of routes with cost proportional to their
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level of risk. This empowers the decision maker to choose the acceptable level of risk and obtain the least-cost path associated
with that choice.

The second objective focuses on the development on an effective router for directing the each sub swarm to the requested
individual waypoints and leading to the specific targets. Numerous individuals have studied this problem and define a foundation
for solving the swarm routing problem using this model [26,33,34]

The third objective using parallel path planning computation provides efficiency. Our associated Genetic Vehicle Routing
algorithm [21,26] uses an evolutionary approach to find an optimal assignment of vehicles to targets for combat or reconnaissance
missions. The algorithm uses as its set of inputs, the cost associated with traveling between any two target locations. This cost
reflects only the Euclidian distance between the targets. In order to include the cost incurred by turning from one location and
preceding to another, which increases the path length, the actual cost of traveling between two locations must include the
direction from which the UAV swarm approached the first target and the direction the swarm departs the second target in route to
a subsequent target. The generation of optimal route triplets scales as O(n®) compared to the O(n?) cost of optimizing pair-wise
links. This limits scalability but is less costly than the exponential alternative of enumerating and calculating all possible
permutations of complete route assignments. To offset some of the cost of enumerating triplets, the path planning algorithm is
parallelized, solving multiple triplets concurrently. The output data from the path planner is then given as input to the GVR
algorithm which has been modified to use this new data in its evaluation function. The result is an optimal assignment of UAVs to
targets based on the true costs of completing the routes. Testing on this component focuses on the efficiency and scalability of the
parallelization of the path planner and its ability to answer queries from the vehicle router.

Regarding the fourth objective for behavior evaluation, our swarm simulation model [5,10] represents a swarm of
autonomous air vehicles with a set of three behaviors. The first swarm behavior is the tendency to remain together. The second
behavior is a tendency to maintain a safe distance from one another. The third behavior is for the swarm members to align
themselves together toward a particular direction. The swarm simulation is extended in this research to include a routing
capability that guides the swarm along a route generated by the path planner and the GVR optimizer while still adhering to the
three required swarm behaviors.

4 Mission Planning and Routing

Mission Planning for swarms of autonomous unmanned aerial vehicles requires an efficient assignment of vehicles or sub-swarms
to targets, a set of efficient, feasible paths for vehicles to follow, a set of swarm behaviors that allow the swarm members to reach
their targets while maintaining their collective swarm properties, and a detailed simulation of the mission to ensure objectives are
met. This section considers historical approaches to solving these individual problems as well as a discussion of ways to unify
these problem domains into a comprehensive problem statement.

Path planning: UAV path planning is a subset of a broader set of general path planning problems. All path planning
problems and the algorithms used to solve them consist of some initial condition, objective, and a set of actions that completely
connect the initial condition to the objective. However, there are many ways to specify a path planning problem. The method
selected is often linked to the algorithm used to solve the problem.

Two broad categories of path planning problems and approaches dominate the research. The first category defines the
problem in what is known as a configuration space. Problem formulations of this type involve determining the set of desired
actions (torques, rotations, and other forces) needed to move a system from an initial state to a goal state. The second category of
problem formulations, trajectory spaces, involves generating a set of feasible trajectories to move a vehicle from an initial
location to a goal location.

In this research, paths are specified in line segments with restrictions on the degree of turn to ensure the path is navigable.
Further, the concept of terrain masking which was loosely developed by Mittal [13] is extended with a complete terrain masking
algorithm. The algorithm determines the maximum altitude (AGL) of an aircraft at a particular point such that at or below this
altitude it is out of sight of a known threat - intervisibility. In addition to remaining out of sight of known threats, the terrain
masking algorithm seeks to minimize the vehicle’s exposure to unknown threats. This principle is known as hidability. It
calculates the number of nearby points from which a vehicle is visible at a given altitude over a given point (see Figure 1).

Autonomous vehicles architectures: Abstract autonomous vehicles architectures for mission planning have been proposed by
Reynolds [18,19] based upon a hierarchical game model, Gat [8] based upon a hierarchical control model and Price [15,16] based
upon a finite automata self-organization model. Rysdyk [30] defines a trajectory following guidance architecture. Generally,
desired complex goal-oriented behaviors are defined at the top of hierarchies and are produced by aggregations of lower level
behaviors generally reflecting implicit or explicit state definitions.

Reynolds “game” hierarchal framework is: Action Selection (strategy, goals, planning), Steering (path determination), Locomotion
(animation, articulation, control). Gat’s three layer robot hierarchy is: Deliberator (goals, planning), Sequencer (plan execution),
Controller (reactive feedback control, primitive behavior). Price’s formal agent hierarchy is: System state (combined plans,
environmental effectors), UAV Agent state (archetypes, behavior determination, path), Update local state (reactive action,
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Figure 1 Principles of Hidability

Probing the details of these suggested frameworks, one would note that they are similar as regarding plans, behaviors, and
implementations. Differences exist as to behavior specifics at each level, explicit interfaces between levels and use of associated
formal notations. Reynolds for example developed a complex model for 3-D autonomous animation that was implemented for
video games such as Sony’s Play Station. Gat’s architecture was developed for individual robot movement resulting in the
ATLANTIS system. Price’s model was used to develop a UAV swarm simulation with extensive environment interaction.

The physical model to represent a vehicle or physical agent is usually based on a point mass model consisting of a mass,
position, velocity, maximum force, maximum speed, and an orientation with possibility of turn radii and moment of inertia.. The
orientation can be given as a set of N-basis vectors and is therefore suitable for both ground and air vehicles. With the point mass
vehicle model, the behaviors associated with the hierarchy act directly on its vectors. The low-level control signals which
generate the primitive behaviors are communicated from the desired plan behavior. Behaviors under these hierarchies can include:
seek, flee, arrival, pursuit, offset pursuit, path following, obstacle avoidance, and containment. Seek is the pursuit of a static
target. It acts to steer toward a particular position. Flee steers the agent so that its velocity is radically aligned away from a fixed
location. Pursuit is like seek but the added factor that the target is moving. This behavior requires not only knowledge of the
target’s velocity vector, but also the capability to predict the targets future velocity. Evasion is the opposite of pursuit i.e. the
character is steered away from the predicted location of the moving target. Offset pursuit steers a path to come within and
maintain a fixed distance from a moving target. Arrival is the same as seek when there is a significant distance between the
vehicle and the target. However, arrival slows the vehicle down as it approaches. This behavior ends with the vehicle at a zero
forward velocity and a position coincident with the target.

This view of behavior hierarchy addresses many of the requirements for a UAV swarm in order to be able to follow feasible
paths to targets. The behavior set is rich and requires a complex set of individual members to execute. As to the level of
autonomous self-organized UAVs, feasible paths can be generated by path planning module offline and assigned to swarm
members or agents thus relieving them of burdensome computational requirements. At the strategic level of planning, the
assignment of sub-swarms to target sets can also be performed offline allowing decision makers, rather than swarm agents
themselves, to better guide the behaviors of the swarm to meet the goals. Within each of the suggested frameworks, such
architectural variations can be selected. This then is the complex computational framework used in our UAV mission planning
and routing system [23].

Evaluating our UAV routing performance is done on the AFIT UAV Swarm Simulator, a Parallel Discrete Event Simulation
(PDES). Based originally on Reynolds’ Distributed Behavior Model for flocking, the simulator was developed by Kadrovach [10]
based impart on Reynolds’ Distributed Behavior Model [18]. Corner [5,6,20] ported the model from a single-processor Windows
platform to a parallel Linux-based Beowulf cluster. Slear [23] extended the model and integrated the mission planning generic
framework into the current computational environment.

5 High Level Designs

The high level system design consists of three principal components: a parallel path planner, a vehicle router, and a
simulation and visualization engine. The development of a comprehensive UAV mission planning system consists minimally of
an efficient assignment of resources to targets, an effective means to create vehicle trajectories that minimizes risk to the
resources and mission cost, and a behavior model that produces swarm behavior without degrading the other capabilities.

5.2 Parallel Path Planner
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Two generic objectives are required: create an efficient and effective path planner using a MOEA, and create a flexible
parallelization of the algorithm to allow for rapid generation of multiple paths for use in solving higher level optimization
problems such as the capacitated vehicle routing problem (CVRP) [27].
The specific path planning problem model for UAVs consists of the following:
Given a discrete operational space of size n x m units
superimposed over a terrain grid G €(n —1) x (m —1) with
Location set L, where lenxnVlelL

subject to: Vp, ... p,€ P, AO (p;, pir1 ) <45°
where 0 is the inbound heading at p;
determine the least cost path P* from all /€ L to all ;e L

The restriction A < 45 °, ensures that the path remains flyable by the UAV. Based on the grid spacing of 750 meters, the
UAV can safely navigate a 45-degree turn. This turn restriction can easily be modified to suit other vehicle types.

The term “cost” is a composite of individual objectives or measures of merit of a mission. In this research, five such
measures of merit are defined (path, climb, terrain, detection, kill cost).

The path is the sum of the Euclidian distances of the route segments. Climb is the amount of climbing a vehicle must do in
the course of flying a route in order to avoid terrain. The Terrain is the cost of exposure to unknown threats or the vulnerability
associated with being “out in the open.” Detection is the cost associated with being exposed to enemy detection — a function of
both distance and time. Kill cost is the cost associated with being within the lethal range of an enemy air defense weapon — a
function of range, time and the lethality of the weapon. While the problem domain of the generalized path planner has no
restriction on the size of the target set L, the target set is limited to three targets or locations per instance, {Po, Pm, Pf}, to
maintain compatibility with the problem domain of the CVRP which is solved by the router.

When a problem has five different cost functions (multi-objective), it can be solved as an aggregate function that attempts to
simultaneously minimize all parameters, or it can be solved as a multi-objective problem where the output consists of a set of
non-dominated solutions along the Pareto front. An end user can select one of these solutions provided they are capable of
deciding the appropriate level of trade-off between two competing objectives. An output consisting of a five-dimensional Pareto
front however, would likely overwhelm the decision maker by providing more questions than answers. Fortunately, the measures
of merit can be grouped logically into two categories: those that describe the cost of the path in terms of time and fuel
consumption, (path and climb), and those that measure the risk of a given path (terrain, detect, and kill). Equations 1 and 2 define
the grouping of the five problem objectives into two competing categories.

(Dcost = aq)path +Bq)climb (1)

q)risk = 6q)detect +)"(Dkill +(DCDterrain (2)

where {a,f, 5, A, ®} are weighting factors associated with the relative importance of each parameter. The individual cost functions
are:

@2 The Euclidian distance between each point is summed over the length of the route.

Dty = if=0 \/(xm-l A )2 + (yi+1 - Y )2 3)

@imp: The sum of positive changes in elevation from each point to the next point;

Dejims =Y. =0 Az(pi, pir1 )d 4)
where 8 is 1 if Z:1 > Z,,; and 6 is 0 otherwise.

Deecr: The total linear distance through which the UAV swarm flies into the effective detection ring of radar.

®@,;;: The same formulation required for the detection cost function is applied to the kill cost function. The distinction between
the two is the effective kill radius of an air defense system is generally smaller than the detect radius.

Derpain: While many threats are known a priori, others are not. Therefore, the UAV swarm should remain out of sight as much
as possible. The terrain metric measures the number of points in the grid from which a vehicle at a particular point can be seen.
The overall terrain score is determined by summing the surrounding points from which the vehicle can be seen as it flies though
each grid point along its path.

MOEA path planner and router: A multi-objective genetic algorithm path planner interfacing to the CVRP router consists
of the following elements: a population of candidate solutions, a defined chromosome structure of each candidate, a set of
evolutionary operators which operate on the members of the population, a pair of evaluation functions to measure fitness of the
solutions, an archived set of non-dominated solutions, and a defined period of evolution. The High Level View of MOEA Path
Planning Algorithm is:

1: procedure MOEA_Planner(N , g, fi(X))
2: Initialize Population P of size N
3: Evaluate, Rank (by dominance), sort Population
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4: Create archive population P, from non-dominated members of P;
S:foriin1to gdo

6:  Select for recombination (crossover)

7:for jin 2 to N do

8: Statistically select mutation operator I';
9: Mutate member j
10:  end for

11: evaluate Population

12: determine dominance rank within current population P,
13: remove dominated members from P,

15: add globally non-dominated members from P, to P,

16: end for

17: end procedure

The vector function fi(x) is the set of evaluation functions. In this algorithm, &=2 where f;(x) is the cumulative cost function and
f2(x) is the cumulative risk function. A population size of 50 individuals is selected along with an evolutionary period of 50
generations, g, based upon computational reasons. No heuristic was developed to terminate the evolutionary cycle once
convergence of the solution was achieved. Further experimentation is needed to study the time saving benefits associated with
early termination of the algorithm.

The chromosome structure is similar to that used in [67]. A chromosome of candidate solution consists of an ordered set of
points (x;y;) which define a path from the starting point (x,,)) to a destination point (x;),) through a midpoint (x,,y,,). Additional
information contained at each point includes elevation (the MSL altitude of the point), set clearance (the AGL altitude of the
point), and heading (the direction of travel from the present point to the next point).

Set clearance and altitude are used to calculate the amount of climb per descent needed to reach the next point as well as for
terrain masking calculations. Heading is stored to ensure feasibility of the turns. The planner calculates the change of heading
between points to ensure the turn rate is within the UAV’s limits. The following diagram illustrates the chromosome structure of a

( B I. } TR I. : £ N : .. 200 I. .I |
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P P, P P Pat P P,

candidate solution.

During initialization, the population of candidates is created with each member containing the start, middle, and end points.
An initial check is performed to ensure that the turn around the mid point is less than 45 degrees. If it is not, a modified convex
hull algorithm is used to add additional points to the route such that no turn greater than 45 degrees remains. Once the route is
repaired, a number of intermediate points are randomly added to the route. The number of points added is based on the distance
between the three original points. During this process, the algorithm ensures that the change of heading between each point
(excluding the starting point) is less than 45 degrees.

Once the population has been initialized [23], it is evaluated using the cost functions described. In a single objective EA, a
program need only maintain the current population. In a MOEA, the complete set of non-dominated points must be maintained.
An approximate Pareto front archive is maintained for this purpose. To find initial approximate Pareto front points, each member
of the population is compared to every other member based on the member’s F, score, @ and by its F, score, @risk. The
population is first sorted by @, A candidate R; is added to the approximate Pareto front if it meets the following criteria:
VpeR~AR,| Fi(R;)> Fi(R,) N Fx(R;) > Fx(R,) %)

All non-dominated members of the population are then added to the Pareto Front Archive. The population is then sorted by
rank. The rank of an individual R;, reflects the number of individuals in the population that dominate Ri. All non-dominated
members of the population are assigned a rank of zero. All members dominated by only a single solution are given a rank of one.
Members dominated by two individuals are given a rank of two etc. Rank is the primary selection criterion used in the path
planner. Dominance count is an alternative selection method. Dominance count is defined as the number of solutions in the
population that a particular solution dominates.

A disadvantage of using dominance is that points along the ends of the front tend to evolve out of the populations while
crowding occurs near the middle of the front. Rank is therefore preferable to raw dominance count because greater diversity is
maintained in the population. Once the population has been evaluated and ranked, selection is performed. Like other MOEAs
[3,4], the planner uses an elitist selection operator. The use of elitism is common in MOEAs because the elitism preserves non-
dominated individuals. The top half of the rank-sorted population is selected for recombination. Pairing of individuals is done
randomly. Once paired, two offspring are created. These offspring occupy the places of the members not selected.

Crossover is performed at the midpoint of the path. This ensures that the offspring remain feasible. During the one point
crossover operation, the midpoints between two parents are exchanged. Since the underlying data structure is a linked list, the
points beyond the midpoint are copied as well. The resulting offspring contain the points of one parent from the start of the path
to the mid point, and the points of the second parent from the mid point to the end of the path.
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Some other crossover operators considered include arithmetical, biased, multi-point, fuzzy forms, and uniform [4]. Because
of the structure of the chromosome and the search landscape, the simple 1-point midpoint crossover provides the desired
exploratory performance.

Once the crossover operator has been applied, the population then undergoes mutation. The path planner uses three distinct
mutation operators which are applied with equal probability. The first mutation operator, M1 attempts to add a point between two
existing points in the path. If the addition of the point results in an infeasible solution, then the repair operator is invoked to create
additional navigation points. The sharper the turn created by the mutation, the more navigation points are needed to smooth the
route. The repair algorithm generates a number of points proportionate to the change in heading caused by the infeasible point.
For turns of just over 45 degrees, only two points are needed. For larger turns, as many as seven additional points need to be
added. Therefore, when the mutation operation adds a point between two relatively nearby points, resulting in an unfeasible route,
the path cannot be repaired and the operation is cancelled. Figure 2 illustrates this situation.

- ] Arbitrary 4-point path segment

O
e —

O g
Segment repaired after mutation

Figure 2 Mutate Add Operation on 4-point Path Segment.

The second mutation operator, M2, attempts to delete a point between two points in the path. Again, if the deletion results in
an infeasible path, the repair operator is called to add points which result in a smooth trajectory. Deletion operations naturally
increase the distance between points. Therefore, the repair operator is usually able to add the points necessary to achieve
feasibility. Nonetheless, feasibility of the repair operation is still validated and if the path cannot be repaired, the operation is
undone. It is important that balance is achieved between delete and addition operations. When too few deletions occur, the
resulting path has too many points and is more difficult to evolve. When too few additions occur, the path tends to have very few
points and the ability of the algorithm to minimize cost and risk is diminished. Because the deletion operation results in greater
success, the addition operation is used with a slightly greater probability.

The last of the mutation operators, M3, selects an arbitrary point (not one of the original three) and attempts to alter its
location by a bounded, random displacement. This operator does not change the number of points in the path by itself but
additional points can be added when the alteration results in an infeasible path. When the bounds of the displacement are loose,
the resulting path is more likely than not to be infeasible. Additionally, loosely-bounded displacement results in a greater number
of points being added due to repair. On the other hand, if the bounds of the displacement are too tight then the operator becomes
nothing more than a tool for local search. Possible additional mutation operators could enlarge the search space. For example, the
use of exploratory mutation operators such as Xiao’s Mutate 2 [28] that deletes multiple consecutive segments and replaces them
with new ones could be considered. Rubio [30] uses a mutation operator in an EA along with market-protocol algorithms for
path planning. Such techniques were not incorporated due to the additional complexity and concern as to generic utility in our
approach.

Again, the swarm simulator must correctly route individual members to required targets by way of required waypoints. These
way points are generated a priori as part of the path planner and are designed to minimize climbing, distance, and risk.

UAV Swarm Behavior: The problem of directing UAV swarm behavior can be expressed as the cumulative problem of
directing individual UAV behavior. The following relations mathematically define the problem domain of the swarm model:
Given a swarm member V; and the following:

A terrain region (X, Y) with an elevation Z =f(X,Y)

A neighborhood vehicle set V

A next waypoint wyex <1, j, k>

A current position s(t) = <i, j, k>

A set clearance C
Create a vector V(t+ Af) to guide v; toward wye, subject to:
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1. z(t+ Af) > C+ fix t+ Aty t+ A ©6)
2. |S(t+ At)'wnext |< ‘s(t)_wnext |

3.Yv eV v# v, |s()— b(v; (1) > |s(t +AH)— b(v; (t +A¢))| where condition 1 maintains the required set clearance, condition 2

moves the vehicle toward the next steering point, and condition 3 adjusts the separation between the member v; and all neighbors
in V toward the proper separation distance.

The behavior model consists of a set of rules to achieve path-following swarm behavior in a set of modes under which the
rules are applied with various weighting factors, and a neighborhood of influence which defines which members affect the
behavior of a given member. Each rule results in a unit vector addition operation applied to an individual. The sum of these
vectors produces the member’s trajectory.

Neighborhood - Just as with swarms of insects or flocks of birds, swarms of UAVs have limitations on information that can
be obtained from other members of the swarm. These restrictions are generally based on the proximity of a member to other
members of the swarm. In our model, we define the notion of neighborhood which is used to define the communication model as
well as shape of the swarm formation. The swarm shape is a 3-D stack of diamond tessellations. Each plane or level in the stack is
offset one half-step from the level directly above or below it.

The main parameter of the swarm formation is the separation b, representing the lateral distance between co-planar members
and the distance of the co-planar neighbor directly in front and behind the member. Co-planar members 45 degrees front-left and
front-right are at a distance of b divided by the square-root of 2.

Individual UAV swarms are not influenced by those behind them for two reasons. First, the lead members are first to climb in
response to terrain and also reach their target and begin their turns before trailing members. Application of the cohesion rule
would cause lead members to throttle back when climbing or turning to allow trailing members to catch up. Instead, catching up is
achieved by trailing members applying the cohesion rule with respect to their distance from the leading vehicles. A second reason
for this simplification is a reduction of the communication overhead. Restricting the neighborhood of a member to those members
level with or in front of the UAV member, reduces the size of the neighborhood considerably. Table 1 defines the neighborhood
of influence surrounding a given swarm member.

Table 1. Neighborhood of individual UAV influence

Plane Distance | # Neighbors
Co-planer b . 3
Co-planar b/\2 2
Plane Above b/\ﬁ 3
Plane Below b/\2 3

Two Levels Up b 1

Two Levels Down b 1
TOTAL 13

Rules. The behavior model consists of a set of three rules R = {rl, 12, r3} [45]. The application of these rules result from the
interaction of individual swarm members with one another and with the terrain. As defined by Kadrovach [10] and implemented
by Corner [3], each swarm member can only detect and be influenced by its neighbors. The first rule creates a vector that causes
a vehicle to move toward its neighbor whenever the distance to that neighbor exceeds the threshold distance value. Recall that
vehicles in the lead with respect to the next target are not influenced by the cohesion rule except by their coplanar members to the
left and right.

Separation. Also from Reynolds, this rule adds a vector to the member moving it away from a neighbor when the distance to
that neighbor decreases to below the threshold value. Leading vehicles have no members in front of them and are not directly
influenced by those behind them. Therefore the separation rule applies only to their left and right co-planar neighbors and their
neighbor’s two planes directly above and below them. This rule replaces a more general alignment rule [3,10,18].

Modes. The simulation progresses under two primary modes: warp and synchronization. During warp mode, communication
among swarm members is suspended. Individual members continue on their path at their current heading. When small changes in
individual trajectories are needed to avoid terrain, the other members are not notified. An individual member simply adjusts its
trajectory as needed. During synchronization mode, members determine their neighborhoods and adjust their trajectories
according to rules 1 and 2. The simulation enters synchronization mode under two conditions: a) whenever a member alters its
angular velocity by an amount greater than n/8 degrees, and b) at scheduled fixed time intervals. The later condition is required to
prevent drift in the swarm which would occur if minor changes in trajectory are extrapolated over long periods of time. During
warp mode, the members apply only rule 3 which accounts for climbing and descending. Under synchronization mode, the swarm
applies rules 1 and 2 with a weight of 20% and it applies rule 3 with a weight of 30%. This weighting was established empirically
for maintaining swarm characteristics while achieving the target seeking behavior.
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Communication Model. The simulation is built on the SPEEDES time-warp framework [24]. Agent message traffic is
restricted to neighbors and to the central simulation engine. This allows for true scalability of the UAV swarm model.

Since the entire swarm embarks on the mission from a single location, a swarm split must be performed as sub-swarms go out
in search of their individual targets. In order to minimize maneuvering and communication required for a split operation, the
swarm uses a train or sausage link model in its original formation. Upon reaching a designated split point, the leading section of
the swarm becomes a sub-swarm and turns towards its next target. The remainder of the swarm turns toward its next target. The
split is done along the length of the swarm like a section of railroad cars being removed from the track. This method has the
advantages of maintaining the shape of the sub-swarm and reducing the swarm’s temporal footprint. Once a swarm has split, there
is no join operation defined. At the end of the mission, all swarms return to their embarkation point. Due to varying target
assignments, the sub-swarms return home separately.

5.2 UAV Swarm Router

The purpose of this section is to discuss the implications of applying Multi-objective Evolutionary Algorithms (MOEAS) to the
Vehicle Routing Problem with Time Windows (VRPTW). Specifically, as more constraints are applied to the VRP (as in the
VRPTW) the solution space and Pareto front features change in such a way that multi-objective evolutionary approaches provide
effective means of determining optimal solutions in a tractable time frame. Initial experimental results show the validity of this
idea for the VRPTW. The concept of the UAV Swarm Routing Problem (SRP) as a new combinatorics problem for use in
modeling UAV swarm routing is presented as a variant of the Vehicle Routing Problem with Time Windows (VRPTW). The
genetic operators used are discussed in the context of how they contribute to finding better solutions. While some operators
contribute random exploration aspects others contribute increasing value (decreasing path length) alterations to identified
solutions..

5.2.1 Multi-Objective VRPTW Formulation Most often a VRPTW is optimized for path length. A second objective is the
minimization of the number of vehicles used. In the VRPTW there are three objectives that can be optimized:

Total path length

Number of vehicles

Minimum waiting time
Waiting time is the amount of time a vehicle has to wait if it arrives at a customer too early. Minimizing this objective implies an
efficient scheduling of all vehicles to all customers. One concludes that these two objectives are in contention in most problems,
as efficient scheduling usually implies a lack of optimal path length (deploying two vehicles costs more but ensures minimum
total waiting time). Optimizing effectively across both objectives allows for a more incremental search of the non-dominated front
of solutions resulting in better optimal solutions. This is why multi-objective approaches to the VRPTW often lead to better
results compared to biased single objective implementations [31] [32].

VRPTW Chromosome Structure Any chromosome solution used in a VRP must be able to specify how many vehicles are
required and which cities must be visited in what order. The solution chromosome defines a genotype, which is a code
corresponding to a phenotype which is the actual solution. In terms of total information the genotype does not need to contain
redundant or implied information. For example, in the VRP it is implied that a route starts at the depot and ends there. Encoding
this information in a chromosome would therefore be a waste of space. There are three ways to accomplish this, others could be
formulated but these have been deemed effective through their repeated usage. A possible solution structure is a bit string where
every bit corresponds to an edge in the solution (and every bit is either one or zero indicating whether it is or is not in the
solution). This structure is very simple but grows large very quickly and the organization requirement of the VRP lend itself more
toward real valued structures anyway. The second structure is a single array of real values, the order of which indicates the order
of visitation. Each route is separated by zeros. This structure is more efficient but still requires the use of separators to indicate
where a route begins and ends.. In [26] a structure for a VRP chromosome is defined that uses a similar idea as the array structure
but attaches each route to a support structure, like that seen in Figure 3..The most beneficial aspect of this structure is that changes
made to a given route do not require a shift to the entire array of values. In [48] this structure is proposed, and shown to be, an
effective structure especially for the VRPTW. This structure is also used in previous research by Slear 23] and Russel [21].

The GVR structure offers many attributes that m